IN THE NAME OF GOD

1- Personal details

Name: Farhad Heidary Address: Department of Chemistry, Faculty of Science, Arak University, Arak, Iran PO. Box: 38156-8-8349, Arak, Iran Nationality: Iran E-mail Address: F-heidary@araku.ac.ir, heidary.farhad@yahoo.com Telephone: +98 8634173415 Fax: +98 8634173406

2- Education

B. Sc. (Applied Chemistry) Arak University, Arak, Iran, 2008M.Sc. (Applied Chemistry) Razi University, Kermanshah, Iran, 2010Ph.D. (Applied Chemistry) University of Tehran, Tehran, Iran, 2015

3- Research

- Membrane processes
- Membrane characterization
- Separation technology
- Nano-technology
- Water treatment

4- Publications

[1] Book:

• Ceramic Membranes for Separation and Reaction, Published by Arak University, 2019.

[2] ISI Articles:

• Sayed Siavash Madaeni and **Farhad Heidary**, Improving separation capability of regenerated cellulose ultrafiltration membrane by surface modification, *Applied Surface Science*, 257 (2011) 4870–4876.

- Sayed Siavash Madaeni and Farhad Heidary, Effect of surface modification of microfiltration membrane on capture of toxic heavy metal ions, *Environmental Technology*, 33 (2012), 393–399.
- Ehsan Salehi, Sayed Siavash Madaeni and Farhad Heidary, Dynamic adsorption of Ni(II) and Cd(II) ions from water using 8-hydroxyquinoline ligand immobilized PVDF membrane: Isotherms, thermodynamics and kinetics, *Separation and Purification Technology*, 94 (2012) 1-8.
- Sayed Siavash Madaeni, **Farhad Heidary** and Ehsan Salehi, Co- adsorption/filtration of heavy metal ions from water using regenerated cellulose UF membranes modified with DETA ligand, *Separation Science and Technology*, 48 (2013) 1308–1314.
- Farhad Heidary, Ali Nemati Kharat and Ali Reza Khodabakhshi, Preparation, Characterization and Transport Properties of Novel Cation-Exchange Nanocomposite Membrane Containing BaFe₁₂O₁₉ Nanoparticles, *Journal of Cluster Science*, 27 (2016), 193-211.
- Farhad Heidary, Ali Reza Khodabakhshi and Ali Nemati Kharat, Synthesis, characterization and transport properties of novel ion-exchange nanocomposite membrane containing in-situ formed ZnO nanoparticles, *Journal of Nanostructures*, 5 (2015) 19-25.
- Farhad Heidary, Ali Reza Khodabakhshi and Ali Nemati Kharat, Novel ion-exchange nanocomposite membrane containing in-situ formed FeOOH nanoparticles: Synthesis, characterization and transport properties, *Korean J. Chem. Eng*, 33 (2016) 1380-1390.

- Behrouz Heidari, Maryam Ansari and **Farhad Heidary**, The effect of ZnO, Fe₃O₄ and graphene oxide nanostructures on the microwave absorbing properties of polystyrene composites, *Journal of Materials Science: Materials in Electronics*, 28 (2017) 1028-1037.
- Farhad Heidary, Ali Nemati Kharat, Alireza Khodabakhshi and Sayed Siavash Madaeni, Influence of preparation procedure and ferric oxide nanoparticles addition on transport properties of homogeneous cation-exchange SPPO/SPVC membrane, *Bulletin of Materials Science*, 40 (2017) 631–644.
- Farhad Heidary, Ali Reza Khodabakhshi and Davood Ghanbari, A novel sulfonated poly phenylene oxide-poly vinylchloride/ZnO cation-exchange membrane applicable in refining of saline liquids, *Journal of Cluster Science*, 28 (2017) 1489-1507.
- N. Abdali, A. Marjani, F. Heidary and M. Adimi, Fabrication of PVA coated PES/PVDF nanocomposite membrane embedded with in-situ formed magnetite nanoparticles for removal of metal ions from aqueous solutions, *New Journal of Chemistry*, 41 (2017) 6405-6414.
- Ali Reza Khodabakhshi, **Farhad Heidary** and Davood Ghanbari, Cation exchange nanocomposite membrane containing Mg(OH)₂ nanoparticles: Characterization and transport properties, *Journal of Nanostructures*, 8 (2018) 191-201.
- Sepideh Saffarzadeh, Gholamreza Nabiyouni and Farhad Heidary, A short time microwave method for synthesis of magnetic NiFe₂O₄/NiO nanocomposites as a clean technology in photocatalytic degradation of water pollutants, *Journal of Materials Science: Materials in Electronics* 30 (2019) 8171–8181.
- Ehsan Salehi, **Farhad Heidary**, Parisa Daraei, Mohammad Keyhani and Milad Behjoomanesh, Carbon nanostructures for advanced nanocomposite mixed matrix

membranes: A comprehensive overview, *Reviews in Chemical Engineering*, (2019) DOI: 10.1515/revce-2017-0073

- Mohammad Nouri, Azam Marjani, Majid Tajdari and Farhad Heidary, Preparation of cellulose acetate membrane coated by PVA/Fe₃O₄ nanocomposite thin film: an in situ procedure, *Colloid and Polymer Science*, 296 (2018) 1213-1223.
- Mohammad Nouri, Azam Marjani, Majid Tajdari and Farhad Heidary, Improved Ni and Cd Rejection in Cellulose Acetate Mixed Matrix Membranes Coated with PVA/Fe₃O₄, *Journal of Non-Equilibrium Thermodynamics*, 43 (2019) 237-243.
- Farhad Heidary and Ali Reza Khodabakhshi, Ionic transport properties improvement of a new cation-exchange membrane containing functionalized CNT as a clean technology for refining of saline-liquids, *Environmental Technology*, (2019) DOI: 10.1080/09593330.2019.1662852.

5- Additional professional activities:

Research projects:

- Preparation and modification of ultrafiltration membrane for industrial wastewater treatment, National Elites Foundation.
- Preparation and characterization of homogeneous cation exchange membranes containing magnesium hydroxide nanoparticles, Arak University.
- Preparation of homogeneous ion-exchange membranes and investigation of functionalized carbon nanotubes addition on their performance, Arak University.
- Simple chemical synthesis of magnetite nanoparticles and its application in preparation of magnetic acrylonitrile-butadiene-styrene nanocomposites, Arak University.

• Preparation of polystyrene composites as microwave absorbing materials, Arak University.

Attending in academic conferences:

- Separation of Lead Ions from Aqueous Solutions by Filtration with Surface Modified Regenerated Cellulose Ultrafiltration Membrane, S.S. Madaeni and F. Heidary, Iran Membrane Conference, Tehran, Iran, 15-16 February 2011.
- A comparative study on the electrochemical and morphological characteristics of the homogeneous cation exchange membranes based on SPPO & PVC prepared through different methods, F. Heidary, A.R. Khodabakhshi, A. Nemati Kharat, The First National Conference of New Technologies in Chemical and Petrochemical, Tehran, Iran, March 2014.
- Preparation and characterization of homogeneous ion exchange membranes based on SPPO & modified PVC, F. Heidary, A. Nemati Kharat, A.R. Khodabakhshi, The First National Conference of New Technologies in Chemical and Petrochemical, Tehran, Iran, March 2014.
- The effect of inorganic fillers content on the transport performance of cation exchange membranes, F. Heidary, A.R. Khodabakhshi, A. Nemati Kharat, The 15th Iranian National Congress of Chemical Engineering (IChEC 2015) University of Tehran, Tehran, Iran, 17-19 February 2015.
- Preparation of cation exchange membranes incorporating inorganic oxide nanoparticles, F. Heidary, A. Nemati Kharat, A.R. Khodabakhshi, The 15th Iranian National Congress of Chemical Engineering (IChEC 2015) University of Tehran, Tehran, Iran, 17-19 February 2015.
- Synthesis and characterization of sulfonated poly (2, 6-dimethyl-1, 4-phenylene oxide) (SPPO)– SiO₂ ion-exchange nanocomposite membrane, F. Heidary, A. Nemati Kharat, A.R. Khodabakhshi, 2nd International Conference on Desalination using Membrane Technology, SINGAPORE, 26-29 July 2015.

- Removal of cadmium from water using modified PVDF membrane, S.S. Madaeni and F. Heidary, 13th Iranian National Chemical Engineering Congress & 1st International Regional Chemical and Petroleum Engineering, Kermanshah, Iran, 25-28 October 2010.
- Investigation of PVA coated nanocomposite membrane performance for removal of toxic metal ions from aqueous solutions, F. Heidary, 9th National Seminar of Chemistry and Environment, Arak, Iran, 3-4 September 2019.

Invention:

- Functionalized Cellulose Ultrafiltration Membrane for Removal of Heavy Metals from Water, State Organization for Registration of Deeds & Properties, Intellectual Property Center
- Modified Microfiltration Membrane for Removal of Metal ions from Water, State Organization for Registration of Deeds & Properties, Intellectual Property Center

Teaching:

- Industrial chemistry
- Chemical Industries Fundamentals
- Chemical reaction engineering (Reactor design)
- Principles of industrial chemistry calculations
- Membrane processes
- Synthesis Methods of Nanostructured Materials
- Surface Active Agents (Surfactants)
- Corrosion of Metals